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Outline

• Experimental design

• The open source software for bioinformatics Bioconductor

• Low level analysis (”Preprocessing” or ”cleaning” of the data)

• High level analysis
◮ Gene focused analysis

◮ Find list of interesting genes.
◮ Characterize the list of genes: Functional enrichment, network

construction
◮ Patient focused analysis

◮ Classification of the patients into disease subtypes
◮ Predicting outcome (e.g time to death/relapse) of patients
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Experimental design

Issues to consider

• How many replications

• Pooling vs non-pooling

• Strategies for pairing hybridization targets on two-channel (cDNA)
arrays

Some consensus points:

• Biological replication is essential. You should have at least five
biological cases. NB! Power analysis methods for microarray data
exist (e.g. Pawitan et al, 2005).

• Pooling biological samples can be useful. Technical variation often
seen to be smaller than biological variation.

• Avoid confounding by extraneous factors

• Groups to be compared should be hybridized to the same arrays
(two-channel cDNA arrays)
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Bioconductor

• An open source and open development software project for the
analysis and comprehension of genomic data.

• Started in 2001.

• Is based on the R programming language.

• In addition a huge number of analysis methods, Bioconductor
contains a large number of meta-data packages.
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Working with Bioconductor

Make a pheno data file (a tab-delimited text-file), e.g. ”pd-hf.txt”.

FileName Group
JBM 942.CEL AB
JBM 812.CEL AB

...
...

JBM 439.CEL AB
JBM 494.CEL AB-HF
JBM 496.CEL AB-HF

...
...

JBM 937.CEL AB-HF

Store the file in a folder called e.g. ”C:/microarray”, where you also have
the microarray data (the cel files).
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Working with Bioconductor

Set working directory.
>setwd(”C:/microarray”)
Install and load bioconductor packages:
>source(”http://bioconductor.org/biocLite.R”)
>biocLite(”affy”)
>library(affy)
Read the pheno data file
> pd < −read .AnnotatedDataFrame(”pd − hf .txt”, header = TRUE )
Read the microarray data (the cel files)
> data < −ReadAffy(filenames = rownames(pData(pd)), phenoData =
pd)
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Quality control

Some quality measures:

• Difference between observed and expected values for spike-in probes
(with known quantity)

• Variation of replicated control or spike-in probes

• Variation in background signal

Visual inspection:

• Look for spatial effects

• For two-channel (cDNA) arrays look for (unwanted) dependence
between differential and overall expression using Ratio Intensity (RI)
(also called MA) plots.

Microarray pseudo image for
investigating spatial effects. Ratio Intensity plot.
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Normalization of Affymetrix data

• Early approach: PM-MM

• Problem: MM detects also signal from the PM, i.e. is not only
measuring non-specific binding
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GCRMA (Irizarry et al, 2004)

• GeneChip Robust Multiarray average

• Uses a stochastic model for background adjustment that uses probe
sequence information

Figure: The effect of the bases A,T, C and G
plotted against probe position.

PM = OPM + NPM + S

MM = OMM + NMM + φS

Here O represents optical
noise, N represents
non-specific binding and S is
a quantity proportional to
RNA expression. The
parameter 0 < φ < 1
accounts for the fact that for
some probe-pairs the MM

detects signal.
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Comparison of some common Affymetrix preprocessing

methods

Figure: Figure a shows the boxplots of log fold changes for unaltered non-spiked
in probes. The boxplots should be narrow. Figure b shows expected versus
observed values for spiked-in probes. The values should be on a straight line.
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GCRMA in Bioconductor

> biocLite(”gcrma”)
> library(”gcrma”)
> eset < −gcrma(data)
Some check on how the normalization worked.
Boxplot of arrays before normalization
> boxplot(data)
And after normalization
> boxplot(data.frame(exprs(eset)))
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Normalizing cDNA arrays

• There are many normalization methods for cDNA arrays

• They differ mainly in the way spot segmentation (distinguishing
foreground from background intensities) is carried out.

• Background adjustment can increase the variability of the processed
expression data, and should therefore maybe be avoided (Qin and
Kerr, 2004).

• Many methods use lowess smoothing of RI plots (straightening the
RI plots)

• Model based normalization using ANOVA has also been proposed
(Kerr et al, 2000).
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Detecting differential expression

We want to test differential expression between two groups for
i = 1, . . . , p genes (p of order 10000). This can be done using ordinary
two sample t statistic

ti =
x̄i − ȳi

σ̂i
,

where σ̂i is the (estimated) standard deviation for the difference x̄i − ȳi .

Variance estimates can be improved by ”borrowing strength” across
genes in a technique called variance shrinkage:

zi =
x̄i − ȳi√

Bσ̂2
all + (1− B)σ̂2

i

.
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Bootstrap estimated test statistic

Variance shrinkage is often
accompanied by bootstrap
estimation of test statistic under H0

For B bootstrap samples:

• Draw random observations x ′

and y ′ from the set
observations including both
groups
{x1, . . . , xn, y1, . . . , yn}:

⇓ (draw)

{x ′1, . . . , x
′

n},{y
′

1, . . . , y
′

n}

• Calculate the ”null” statistic z ′

from the x ′s and the y ′s.

Compare observed test statistic zobs
with the B z ′-values.

Histogram of z’
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Microarrays and false discovery rate
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Calculating FDR in Bioconductor

> biocLite(′′multtest ′′); library(multtest)
We want to compare seven aorta banded mice with heart failure (AB-HF)
to the seven aorta banded mice without heart failure (AB).
> cl < −c(rep(0, 7), rep(1, 7))
> t < −mt.teststat(exprs(eset), classlabel = cl , test = ”t.equalvar”)
> pt < −2 ∗ pt(−abs(t), df = ncol(exprs(eset))− 2)
How many genes are regulated if we don’t correct for multiple testing:
> length(which(pt < 0.05))
[1] 5288
How many genes are regulated if we do correct for multiple testing:
> pAdjusted < −mt.rawp2adjp(pt, proc = ”BH”)
> sum(pAdjusted$adjp[, ”BH”] < 0.05)
[1] 300
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Investigating the list of regulated genes

Install and load the required annotation packages
> biocLite(c(′′mouse4302.db′′)); library(mouse4302.db)
Find the gene symbols of the list of the 5 most significant genes
> diff < −pAdjusted$index [1 : 5]
> unlist(mget(featureNames(eset)[diff ],mouse4302SYMBOL))
”Dgat2” ”Mllt11” ”Cln6” ”Pdlim5” ”Dgat2”
Look the genes up in entrez gene:
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
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Functional enrichment analysis

• The Gene Ontology annotates genes to biological processes,

molecular functions and cellular components.

• There are many softwares that test categories for enrichment of
regulated genes.

• In Bioconductor TopGO (Alexa et al 2006) and GOstat (Beissbarth
et al, 2004) are nice alternatives.
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Clustering

• A clustering algorithm groups genes together by degree of
correlation in the data.

• Problem: Many thousand genes and many are correlated just by
chance.
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Figure: Cluster diagrams of mice with mild degree (UDCA) and severe degree
(Cholate) of schlerosing cholangitis (Nakken et al, 2008).
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Network construction of regulated genes

• Network construction from genomic data is difficult.

• Many possible combinations of interactions.

• Network construction could be guided by including external
information about interactions.

• Seeded Bayesian Networks (Djebbari and Quackenbush, 2008) guide
the network construction by including interactions reported in
literature and protein-protein interaction databases.

• The R package Bionet connects regulated genes using a
protein-protein interaction database.
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Example of network constructed from the seeded BN

method

Networks arising from a Bayesian
Network analysis of gene expression
data of Golub et al. and rendered in
Cytoscape using (A) no prior
information and (B) prior network
seeds deduced from a combination
of the literature and the
protein-protein interaction data of
Rual et al.
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Patient focused analysis: Classification/prediction

• There is a difference between
patient and gene focused
analysis.

• The list of genes most
correlated with phenotype
(gene focused analysis) is not
necessarily best for
classification/prediction
(patient focused analysis).
Reason: Genes are correlated,
and groups of genes contain
same information.

• Best classification/prediction
rule may be obtained using a
few genes ”representing” the
whole group.
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Classification/prediction approach

• Instead of looking at each gene’s correlation to the phenotype one
by one (gene focused analysis), the optimal classification/prediction
rule looks at the effect of all genes simultaneously. We then answer
the question: what is the effect of gene i when we account for the
effect of all other genes.

• Best prediction rule picks out genes with orthogonal (independent)
information about the phenotype.

• Methodological problem: How to fit a model with a much larger
number (p) of explanatory variables (the genes) than the number of
individuals (n). This is called the p > n (p larger than n) problem.

• The solution is to reduce the number of dimensions
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Variance-bias trade-off

• All these methods are in fact biased, i.e. underestimating the effect
of each gene.

• But they have reduced variance, leading to smaller prediction error.

• Prediction error=bias2+variance
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Dealing with survival data

• In addition to the p > n problem, survival or time to event data
have the problem of censoring. Event (e.g. death) does not always
occur before end of study.

• The Cox model is the most common model dealing with censoring.

• In the Cox model the hazard rate, i.e. the instantaneous risk of
failure at time t, is modeled by

h(t | x) = h0(t) exp (x
Tβ).

• Bøvelstad et al (2007) performed a thorough comparison of the
seven most common dimension reduction method on three
well-known microarray/survival data sets.

• To evaluate prediction performance, models were trained on one part
of the data (training set) and evaluated on another part of the data
(test set). If this not is done, too large models are favored. ”Too
large” means that it includes variables randomly correlated to the
phenotype in the training data (false positives).
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Results of the comparison study of Bøvelstad et al (2007)
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References, further reading and software packages

Miscellaneous

Allison et al (2006). Microarray data analysis: from disarray to consolidation and

consensus. Nature review genetics 7, 55-61. A nice review on microarray data

analysis in general.

Experimental design

Pawitan et al (2005). False discovery rate, sensitivity and sample size for microarray

studies. Bioinformatics 21, 3017-3024. Method for power analysis and sample size

calculation for microarray data. Bioconductor package: OCplus.

Preprocessing

Quin and Kerr (2004). Empirical evaluation of data transformation and ranking

statistics for microarray analysis. Nucleic Acids Research 32, 5471-5479. Comparative

study of different preprocessing techniques for cDNA data.

Quackenbush (2002). Microarray data normalization and transformation. Nature

genetics 32, 496-501. Review on normalization methods for microarray data.
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References, further reading and Bioconductor packages

Wu et al (2004). A Model-Based Background Adjustment for Oligonucleotide

Expression Arrays. JASA, 99, 909-917. Describes the preprocessing method gcrma

for Affymetrix data. Bioconductor package: gcrma.

Kerr et al (2000). Analysis of variance for gene expression microarray data Journal of

Computational Biology 8, 819-837. ANOVA for microarray data. Performs

preprocessing and testing for differential at the same time. Bioconductor package:

maanova.

Detecting differential expression

Tusher et al (2009). Significance analysis of microarrays applied to the ionizing

radiation response. PNAS 98, 5116-5121. Describes the famous SAM method for

testing differential expression and calculation of false discovery rate. Bioconductor

package: siggenes.

Smyth (2004). Linear models and empirical Bayes methods for assessing differential

expression in microarray experiments. Statistical Applications in Genetics and

Molecular Biology 3, No.1, Article 3. Describes a nice package for testing differential

expression, which also controls for multiple testing. Bioconductor package: limma.
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References, further reading and Bioconductor packages

False Discovery Rate

Efron (2007). Size, power and false discovery rates. Annals of Statistics, 35,

1351-1357. Describes a good method for calculating FDR. Bioconductor package:

locfdr.

Dudoit et al (2003). Multiple Hypothesis Testing in Microarray Experiments.

Statistical Science, 18, 71-103. A review article on multiple testing procedures for

microarray data. Bioconductor package: multtest.

Functional enrichment analysis

Werner (2008). Bioinformatics applications for pathway analysis of microarray data.

Current Opinion in Biotechnology, 19, 50-54. A review article on bioinformatics tools

for identification of altered biological processes and pathways.

Alexa et al (2006). Improved scoring of functional groups from gene expression data

by decorrelating GO graph structure. Bioinformatics 22, 1600-1607. Describes a

functional enrichment analysis method which takes dependencies between GO

categories into account. Bioconductor package: topGO.
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References, further reading and Bioconductor packages

Network construction

Djebbari and Quackenbush (2008). Seeded Bayesian Networks: Constructing genetic

networks from microarray data. BMC Systems Biology 2, Article number 57. Method

for network construction using both co-regulations in microarray data, literature

reported interactions and databases of protein-protein interactions. Software

download: http://www.tm4.org/mev.html.

Huang and Fraenkel (2009). Integrating Proteomic, Transcriptional, and Interactome

Data Reveals Hidden Components of Signaling and Regulatory Networks. Science

Signaling 2 (81) Another integrative network construction method, using microarray

data together with protein-protein interactions and transcription factor binding

data. Software download: http://www.tm4.org/mev.html.
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References, further reading and Bioconductor packages

Classification/prediction

Bøvelstad et al (2007). Predicting survival from microarray data – a comparative

study. Bioinformatics 27, 2080-2087. A thorough comparison of the seven most

common methods for survival prediction from microarray data. Finds that ridge

regression has the best performance. Software download:

http://www.med.uio.no/imb/stat/bmms/software/microsurv

Goeman (2009). An R package for performing lasso and ridge regression using

high-dimensional data as covariates. Convenient for classification/prediction

purposes. Software download: http://cran.r-project.org/web/packages/penalized.

RNA-seq

Robinson et al (2009). edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data Bioinformatics 26, 139-140. Method for

analysing gene expression data from high-throughput sequencing (RNA-seq data)

Bioconductor package: edgeR.
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